Nonparametric bootstrap of sample means of positive-definite matrices with an application to diffusion-tensor-imaging data analysis
نویسندگان
چکیده
This paper presents nonparametric two-sample bootstrap tests for means of random symmetric positive-definite (SPD) matrices, according to two different metrics: the Frobenius (or Euclidean) metric, inherited from the embedding of the set of SPD metrics in the Euclidean set of symmetric matrices, and the canonical metric, which is defined without an embedding and suggests an intrinsic analysis. Fast algorithms are used to compute the bootstrap instrinsic means in the case of the latter. The methods are illustrated in a two-group comparison of means of diffusion tensors (DTs) obtained from a single voxel of registered DT images of children in a dyslexia study. Short title: Nonparametric Data Analysis for SPD Matrices
منابع مشابه
Diffusion Tensor Imaging and Deconvolution on Spaces of Positive Definite Symmetric Matrices
Diffusion tensor imaging can be studied as a deconvolution density estimation problem on the space of positive definite symmetric matrices. We develop a nonparametric estimator for the common density function of a random sample of positive definite matrices. Our estimator is based on the Helgason-Fourier transform and its inversion, the natural tools for analysis of compositions of random posit...
متن کاملDeconvolution Density Estimation on Spaces of Positive Definite Symmetric Matrices
Motivated by applications in microwave engineering and diffusion tensor imaging, we study the problem of deconvolution density estimation on the space of positive definite symmetric matrices. We develop a nonparametric estimator for the density function of a random sample of positive definite matrices. Our estimator is based on the Helgason-Fourier transform and its inversion, the natural tools...
متن کاملNonparametric Two-Sample Tests on Homogeneous Riemannian Manifolds, Cholesky Decompositions and Dyslexia Detection from Diffusion Tensor Imaging Outputs
This paper addresses much needed asymptotic and nonparametric bootstrap methodology for two-sample tests for means on Riemannian manifolds with a simply transitive group of isometries. In particular, we develop a two-sample procedure for testing the equality of the generalized Frobenius means of two independent populations on the space of symmetric positive matrices. The new method naturally le...
متن کاملDiffusion Tensor Imaging for Glioma Grading: Analysis of Fiber Density Index
Introduction: The most common primary tumors of brain are gliomas and tumor grading is essential for designing proper treatment strategies. The gold standard choice to determine grade of glial tumor is biopsy which is an invasive method. The purpose of this study was to investigatethe role of fiber density index (FDi) by means of diffusion tensor imaging (DTI) (as a noninvasive method) in glial...
متن کاملNon-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging
The statistical analysis of covariance matrix data is considered, and in particular methodology is discussed which takes into account the non-Euclidean nature of the space of positive semi-definite symmetric matrices. The main motivation for the work is the analysis of diffusion tensors in medical image analysis. The primary focus is on estimation of a mean covariance matrix, and in particular ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Communications in Statistics - Simulation and Computation
دوره 46 شماره
صفحات -
تاریخ انتشار 2017